A Study of Neural Training with Iterative Non-Gradient Methods
نویسندگان
چکیده
منابع مشابه
Conjugate Gradient Methods in Training Neural Networks
Training of artificial neural networks is normally a time consuming task due to iterative search imposed by the implicit nonlinearity of the network behavior. To tackle the supervised learning of multilayer feed forward neural networks, the backpropagation algorithm has been proven to be one of the most successful neural network algorithm. Although backpropagation training has proved to be effi...
متن کاملTraining Skinny Deep Neural Networks with Iterative Hard Thresholding Methods
Deep neural networks have achieved remarkable success in a wide range of practical problems. However, due to the inherent large parameter space, deep models are notoriously prone to overfitting and difficult to be deployed in portable devices with limited memory. In this paper, we propose an iterative hard thresholding (IHT) approach to train Skinny Deep Neural Networks (SDNNs). An SDNN has muc...
متن کاملA conjugate gradient based method for Decision Neural Network training
Decision Neural Network is a new approach for solving multi-objective decision-making problems based on artificial neural networks. Using inaccurate evaluation data, network training has improved and the number of educational data sets has decreased. The available training method is based on the gradient decent method (BP). One of its limitations is related to its convergence speed. Therefore,...
متن کاملreflections on taught courses of the iranian ma program in english translation: a mixed-methods study
the issue of curriculum and syllabus evaluation and revision has been in center of attention right from when curriculum came into attention of educational institutions. thus everywhere in the world in educational institutions curricula and syllabi are evaluated and revised based on the goals, the needs, existing content, etc.. in iran any curriculum is designed in a committee of specialists and...
Projected non-stationary simultaneous iterative methods
In this paper, we study Projected non-stationary Simultaneous It-erative Reconstruction Techniques (P-SIRT). Based on algorithmic op-erators, convergence result are adjusted with Opial’s Theorem. The advantages of P-SIRT are demonstrated on examples taken from to-mographic imaging.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SSRN Electronic Journal
سال: 2021
ISSN: 1556-5068
DOI: 10.2139/ssrn.3767366